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The structure of a shock wave in a vibrationally relaxing gas undergoing re-
flexion from a plane wall is examined. The shock wave is assumed to be weak, and
departures from thermodynamic equilibrium are assumed small; both an adia-
batic and an isothermal wall are considered. The flow field is divided into three
regions: a far-field region, an interaction region, and, for the isothermal-wall
case, a thermal boundary layer. Different asymptotic expansions are determined
for the various regions through the method of matched asymptotic expansions.
In the region far from the wall, a non-equilibrium Burgers equation governs the
motion and the incident and the reflected shock wave structures. During re-
flexion, a non-equilibrium wave equation applies; its first-order terms are
equivalent to an acoustic approximation. Heat conduction to the wall is modelled
by an isothermal wall boundary condition which requires the introduction of a
thermal boundary layer adjacent to the wall. This thermal boundary layer is
thin and the adiabatic-wall result provides the outer solution for treating this
layer. This thermal layer affects the structure of the reflected wave.

1. Introduction

The thermodynamic equilibrium that normally exists between the various
forms of energy of gas molecules may be temporarily destroyed by the sudden
change of temperature that occurs when a gas is traversed by a shock wave.
While translational and rotational degrees of freedom return to equilibrium
after a few collisions, some of the internal degrees of freedom may require hun-
dreds or thousands of collisions before they readjust to thermodynamic equili-
brium. In many polyatomic molecules, energy is invested in the vibrational
mode, even when the gas is processed by an acoustic wave or a weak shock.
Determining the amount of energy invested in the vibrational mode is important
in sound absorption, moderately high enthalpy internal and external flows,
and in other situations (see e.g. Freeman 1958; Vincenti & Kruger 1965; Glassman
1966; Becker 1970). An account of the basic physics of such processes, as well as
their effect on basic gasdynamic flows, was given by Clarke & McChesney (1964).

A shock wave heats the gas passing through it rapidly and homogeneously,
and thus provides a useful experimental means of initiating non-equilibrium
processes. However, the gas processed by a shock wave is set in motion, compli-
cating experimental measurements. Allowing the shock wave to reflect from the
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end wall of a shock tube results in a nearly quiescent gas, and provides some
advantages in studying the non-equilibrium rates. Spence (1961) was the first to
study analytically the unsteady flow field behind a reflected shock wave in a
relaxing gas. He investigated the motion of a strong shock wave produced by
a piston and pointed out that relaxation times could be measured by observing
the shock path. Baganoff (1965) measured the end-wall pressure histories in
shock-reflexion processes, and concluded that the end-wall pressure, which is
easy to measure, is quite sensitive to the relaxation processes in the driven gas.
The method of characteristics has been employed to calculate the reflected
shock-wave flow field in the presence of relaxation; Johannesen, Bird & Zienkie-
wicz (1967) combined the Rankine-Hugoniot, characteristic, and Rayleigh-line
equations, and made calculations for vibrational relaxation in carbon dioxide.
They found good agreement among computer results, Baganoff’s end-wall
pressure histories and their own experimental results of density distribution
behind the reflected shock. Presley & Hanson (1968) also employed the method
of characteristics and carefully calculated the time-dependent reflected shock-
wave flow field with chemical reaction. Later, Hanson (1971a,b) used this
concept, employed the approximate large-time and small-time solutions for the
end-wall pressure history to establish the timewise variations of the thermo-
dynamic state of the gas adjacent to the wall, and used these results to study
vibrational relaxation in carbon monoxide. Brandon (1969) calculated shock-
wave reflexion with vibrational relaxation behind the incident shock wave and
simultaneous chemical and vibrational relaxation behind the reflected shock wave.

Goldsworthy (1959) determined the effect of end-wall heat transfer on the
trajectory of a reflected shock wave; Clarke (1967) modified this result by allow-
ing temperature jump at the end wall. This effect was easily observed in the
experiments of Sturtevant & Slachmuylders (1964) and Baganoff (1965),
who compared their measurements with Goldsworthy’s theory. Later, Lesser &
Seebasgs (1968) determined the effect of an isothermal wall boundary condition
on the structure of a weak shock wave.

Buggisch (1969) delineated the analytical solution for the case when the shock
is weak but vibrational effects are strong relative to the shock strength; Bug-
gisch (1970) considered the case of a relatively strong shock perturbed by weak
vibrational effects. He did not consider the effect of heat transfer to the end wall.
The theory we present here considers the case of a weak shock when the effects
of vibrational relaxation are of the same order as the shock strength. We also
include the important effect of heat transfer to the end wall.

In this paper we assume that the shock wave is weak, but that it is still able
to excite the gas vibrationally, that the state is one of small departure from
thermodynamic equilibrium, and therefore that a simple rate model is appro-
priate. The shock wave is assumed fully formed long before reflexion occurs,
so that it is steady with respect to shock-fixed co-ordinates, and its structure can
be calculated from the governing equations. Such a steady solution provides the
initial conditions for the wall-reflexion problem.

The linear theory of wave propagation in a relaxing gas concludes that at large
times the shock structure will be diffusive in character, centred on the equilibrium
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characteristic, and will occupy a region whose width grows parabolically with
time or with distance from the origin. This is not the asymptotic behaviour that
would be expected physically for the far-field steady shock wave. Blythe (1969)
and Ockendon & Spence (1969) developed the appropriate nonlinear theory,
and showed that a generalization of the Burgers equation to the case of a re-
laxing gas applies. Analogous to the Burgers equation, this ‘non-equilibrium
Burgers equation’ applies only to waves moving in one direction.

In the absence of heat conduction, reflexion from a plane wall is analogous to
two shock waves of opposite families interacting with each other. Consequently,
to treat the reflexion process, we need an equation which takes account of wave
motion in two directions; such an equation is derived here. The first-order solu-
tion implies an acoustic approximation. When heat conduction to the end wall
is significant (as it usually is after some time), a thin thermal layer arises and
must be treated separately. The method of matched asymptotic expansions is
used to provide solutions in adjacent domains. For an adiabatic wall, the ex-
pansion is carried out in a parameter that is a measure of the shock strength.
For an isothermal wall there is an additional parameter related to the heat
diffusivity of the gas. For many shock-tube experiments, wall heat conduction
is sufficient to ensure a nearly isothermal wall if the incoming shock is weak.

There are two cases to consider, depending upon the magnitude of the Mach
number My, based on the frozen sound speed. For M, < 1, the incoming shock
wayve is fully dispersed; for M, > 1, the incoming shock wave is partly dispersed.

The methods used here are analogous to those used by Lesser & Seebass
(1968) in their study of the structure of a weak shock wave undergoing re-
flexion from a wall. In § 2 we formulate the problem and determine the incoming
shock structure; in § 3 we determine the solution for reflexion from an adiabatic
wall. In §4 we make the necessary modifications for an isothermal wall.
A numerical method is employed to determine the effect of the velocity induced
by the thermal layer on the reflected-shock trajectory and flow structure. In
§5 we discuss our results.

2. Formulation and incoming shock structure

As indicated in figure 1, we consider a shock wave whose amplitude is
measured by the speed u* of the gas behind the shock propagating from the left
in a semi-infinite uniform fluid initially at rest with pressure pg, density pg,
translational and rotational temperature 7T, internal temperature 7', and the
corresponding frozen and equilibrium sound speeds, a;, and a,,, respectively.
The undisturbed fluid is assumed to be in equilibrium state; that is,

Ty =TFf and u*=0.

The shock strength as measured by u*/ay, is assumed weak (u*ja;) =€ < 1);
far from the wall, the incident shock wave has a steady-state structure,
which propagates at a constant shock speed Ug. Long after reflexion, the
structure of the reflected shock wave will once again approach a steady state
determined by the incident shock strength and the equilibrium thermodynamic
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Ficure 1. Sketch of shock tube and co-ordinate systems.

state of the quiescent gas between the shock wave and the wall. The wall is
located at x* = 0, with the gas occupying the region x* < 0.

A zero-velocity condition at the wall is a necessary, but not a sufficient,
condition for a unique solution to the problem; we must also specify the properties
of the end wall. We neglect wall accommodation effects, and consider the wall
to be either adiabatic or isothermal. For an adiabatic or insulated wall, there is
no thermal layer adjacent to the wall, and the inner solution automatically
satisfies the adiabatic wall condition. In practice the shock-tube end wall is a
good conductor, and heat conduction to the wall must be considered; we make
the approximation that the end wall is isothermal. End-wall heat conduction
creates a very thin thermal layer that takes heat from the adjacent hotter gas
and effectively attenuates the strength of the reflected shock wave. Because the
thermal layer is thin, the adiabatic-wall problem is treated first, and is considered
as the outer solution for treating the isothermal-wall problem. The contribution
to the heat flux due to the internal temperature is taken to be small, to simplify
the analysis. (For the weak shocks considered here, this imposes a restriction
on the allowable difference hetween the frozen and equilibrium values of the
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ratio of specific heats.) Thus, an adiabatic wall temperature implies 77.(0, t*) = 0,
and an isothermal wall requires 7*(0, *) = constant.

We consider a gas in which the internal energy per unit mass e is character-
ized by the translational and rotational temperature 7'*, and the internal tem-
perature T'F, by means of

e = ¢, T*+c,T7. (2.1)
Here ¢,, and c; are the specific heats of frozen and relaxing modes; they are
assumed constant in the temperature range under consideration. We assume
that T* still satisfies the perfect-gas law p* = p*RT*, and that the approach of
the internal temperature T} to the equilibrium value 7* is described by the

linearized rate equation
DTf T*-Tf
Dx T
in which 7 is the ‘relaxation time’ and D/Di* is the substantial derivative.
In general, 7is a functiont of T'*, p* and T'F. Because the disturbance is weak and
the departure from equilibrium is small, 7 may be treated as a constant without
affecting any first- or second-order results.

Inaddition to(2.1)and (2.2), the equations governing unsteady one-dimensiona
flow of a relaxing gas are the conservation of mass, momentum, and energy,
and the thermodynamic equation of state. These equations are the same as
those for an equilibrium gas. The elimination of e, T*, T'¥ from the governing
equations (except for the heat conduction terms) leads to

D\[1 (Dp* Dp*\ y,—1, 8T* vy;—1 du*\?2
(14750 [ (B~ i) =25 b =5 e (353) |
p*ou* k,*T* 1 ou*\?
(Vs=7e) [ﬁggx:*;;a—xﬁ—ﬁ Shot i) \55) [ (23)
in which ™* =1(y,~1)[(y;~1), v,=1+Rc,,
v, =1 +R/Cve =1 +R/(c1,f+ ¢;)s

and where g, is the equilibrium value of the viscosity, ,, that of the bulk vis-
cosity and k, that of the thermal conductivity; all three of these quantities are
taken to be constant throughout the flow field, as their variations cause effects
of higher order than those considered. We retain the viscosity and heat conduction
for the moment; in the absence of end-wall heat conduction, they are of higher
order, and an inviscid theory is appropriate. The coefficient (y;—,) on the right-
hand side of (2.3) determines a new parameter that measures the small departure
from equilibrium. Equation (2.3) proves convenient for our problem. Using
this equation, along with conservation of mass and momentum and the equation
of state, we are able to avoid dealing with the non-equilibrium variable 7',
which can be determined from (2.2) if «* and 7'* are known. Hereafter we con-
centrate on determining the fluid properties u*, p*, p* and T*.

(2.2)

+ Gunn’s (1946) representation for 7 is
71 = Ap*T*1exp [—BT*—%] [1 —exp (—OT*-1)],

where 4 and B are constants and @ is the characteristic temperature of vibration.
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To determine the small perturbation equations for the incoming shock
wave, it is convenient to replace the physical co-ordinates (x*.¢*) by the non-
dimensional independent variables &, 1,

1 _et*
= —— (x* —ant*), t=—
afoT*( §iil ) T*’

and define non-dimensional small-perturbation variables , p, p, T by
u* = agpeu, p* =pg(l+y,ep),
o* = pe(1+ep), T*=TF1+eT).
The dependent variables have asymptotic expansions of the form
u=uV+eu?+ ...

substituting these expansions into the governing equations, and retaining only
the first-order terms in the three small parameters defined after (2.4), we find
Y = pi = T(l)/(yf— 1) = %@ and

sy D 25 ey
(1 3)[3u IR ZaR IRV ]_Kau _o 2.4

o B

ot 2 YPE 2o
where k = dfe = (y;—7,)/2¢ is the ratio of departure from equilibrium to the
shock strength and
Ay = (1+(y;—1)[Pr)[eRy, ...

Here Rafg * = p(:)k a}OT*/(%ﬂO—i_ﬂvg)

is the Reynolds number based on the relaxation length scale a;,7* and

Pr = (4ﬂ0/3+ﬂv0) ')’fcvf/ko

is the Prandtl number. The quantity B, .. is a measure of the number of col-
lisions required for the gas to return to thermodynamic equilibrium, typically
10% or larger (the quantity Pr is typically about $).

Equation (2.4) contains three small parameters: ¢, R;ﬁ,. and & = (y;—v.)/2vs,
related to the shock strength, the ratio of viscous to inertia forces, and the
departure from equilibrium. If we retain cumulative second-order terms, such
as ey, VU, viscous effects, and approximate (y,—7v,)/2Y; as (a;9—a)/as and

Y5Cos S Ve Cyp then (2.4) becomes (in dimensional co-ordinates)

. 0 [ou® +1 _ \Nou®d 1 -1\ &%W
T*—[ v +af0(1—+—yf2 GM(D)L——O;(%MO-i‘ﬂ%‘i‘yf ko) “ ]

ot* | ot* ox* p Y1 Coy o2
ou® Yet+ 1 _\oud 1 Ve—1.\ 0%u®
il - eq® Iy e - =
+[5t* o (1+ 5 ) oa*  py (3” 0T T k") 8%*2] "

which is analogous to Burgers’ equation for equilibrium flows; therefore we call
it the ‘non-equilibrium Burgers equation’. The inviscid version of this equation
was first derived by Blythe (1969). Later, (2.4) was derived by Ockendon &
Spence (1969). Equation (2.4) is important for the study of unsteady non-
equilibrium shock-wave structure.
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Our interest is in the effect of vibrational relaxation on the shock-wave
reflexion process; we simplify the problem by assuming that viscous and heat-
conduction effects are negligible outside the wall thermal layer:

o\ (GuV y,41_ oav\  ouw
1____ _ I (VR ———-—-:0, 2.5
( ag)(at+2“ ag)“ag (2:5)

Here « is the parameter whose magnitude determines whether the shock wave
is fully or partly dispersed. When « is large, relaxation effects are strong and
the convective steepening is balanced by relaxational diffusion and the shock
wave will have a continuous structure. On the other hand, when « is small,
relaxation effects are weak and compressions will steepen to become discontinu-
ities with vibrational effects limited to the flow behind the shock.

Although the general analytic solution to (2.5) for arbitrary initial conditions
isnotreadily found, (2.5) possesses a self-preserving solution and the steady-state
structure can be deduced by introducing a single co-ordinate y = £ — ¢, where
the perturbations are functions of  alone; that is u® = #®(y), ete., with the boun-
dary conditions u® = 0 or 1 and du®/dy = 0 as y - + c0. The steady-state wave
speed Uy is equal to a (1 +€¢B), where £ is determined by boundary conditions.
By writing (2.5) in terms of this shock co-ordinate, y, integrating twice and
applying the boundary conditions, one deduces that

B=(y~D4~x or My=Ugfag=1+(y,+1) Us/dan—(v,—v.)/27y,
where My, is the frozen Mach number.

The steady-state solutions divide into two different cases, depending upon
the magnitude of the ratio of departure from equilibrium to the shock strength
k or upon the frozen Mach number M;,. For M, < 1 orx > }(y,+ 1), the solution
may be written as %V = f(y), where f,(y) satisfies

1—

f%‘fl = ¢, exp (2—————(1‘7J_A)), (2.6)
with 4 = 2f/(y;+1), 2, = —A(1—4) > 0, and ¢, an arbitrary constant related
to shock-wave position. For convenience, set f, = 1 at y = 0; then ¢; = ().
This structure, described by Broer (1951) and Lighthill (1956), is a ‘fully dis-
persed shock wave’, and propagates at a speed intermediate between the frozen
and equilibrium sound speeds. The velocity increases continuously from its
initial rest equilibrium state to the final perturbation equilibrium state. For
My > 1 or k < }(y;+1), the velocity profile given by (2.6) does not represent
a continuous function; rather, it is necessary to insert a Rankine-Hugoniot
shock at the wave front. The proper representation may be written as %™ = 0
for y > 0, and & = f,(y) for y < 0, where f,(y) is defined by

(=15 = ewexp () 27)

with o, =A4/(1-4) > 0, and ¢, determined from the Rankine—-Hugoniot
conditions with the vibrational mode frozen through the shock front. In our
notation, the velocity jumps from the value #® = 0 to f,, where

Jo= v+ 1) (Mfo—1)[2eM;y at y=0 and ¢, = (1-f)f5
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Figure 2. The steady-state velocity profile of fully dispersed shock waves,
varying k = (y;—7v,)/26y;. (Curves labelled with values of «.)

This partly dispersed shock wave propagates at a speed greater than the
frozen sound speed. The wave consists of a Rankine-Hugoniot shock followed
by a gradual further compression which extends over the ‘relaxation zone’.
Thus, we have assumed that the translational and rotational modes adjust to
new equilibrium values instantaneously across the Rankine~Hugoniot shock,
and that the vibrational energy is frozen during this stage. In the relaxation
region, the vibrational temperature adjusts gradually to its equilibrium value,
while the translational and rotational modes remain in local equilibrium.
The remaining independent variables p®, 7 and T'® are related by

PO =p® = T/(y,~ 1)

and equal to fi(y) if M, < 1, or equal to fy(y), if My, > 1. Substitution into the
rate equation (2.2) determines 7'F: TF = T (1+€T'®), where

o= e () oo (5

(B ) o (£ e

0 (y > 0)

= )dg for My <1,

for Mg > 1.

For M,y < 1 there is a gradual increase of temperature and vibrational energy
through the whole wave, and for M, > 1, following the Rankine-Hugoniot
jump, there also is a gradual increase of temperature in the relaxation zone. This
is quite different from the strong shock wave case, where the temperature de-
creases behind the Rankine-Hugoniot shock wave as the vibrational mode
becomes excited. For intermediate shock strengths the behaviour is more com-
plex (see Bethe & Teller 1941). Becker (1970) has sketched the velocity and
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ul

Fiaure 3. The steady-state velocity profile of partly dispersed shock waves,
varying k = (y;—v,)/2¢y, (¢ = 0-01). (Curves labelled with values of «.)

temperature profiles for increasing shock strengths for two different values of
YilYe

Figures 2 and 3 display the steady-state solutions of fully and partly dispersed
shock waves, for moderate «’s. There are three limiting cases. For k very large,
the relaxation zone becomes very long, and the velocity profile is almost constant
over the relaxation length scale a,,7*. For x very small,

My~ 1+ (y,+ 1) ug [4af,

and the velocity profile is represented by a step function that has the same jump
as an equilibrium shock wave followed by a ‘ vibrational tail’. For x > }(y,+ 1),
the frozen Mach number M, — 1 and the velocity profile is approximately zero
fory > 0and

D =[1—(1-24)exp (3y/(1-4)] for y <0,

which is a simple exponential behaviour. The behaviour depicted in figures 2 and
3 is most easily interpreted by considering conditions intermediate to these
limiting cases.

3. Shock reflexion from an adiabatic wall

As a fully dispersed shock wave nears the wall it begins to interact with the
wall. For a partly dispersed wave, which propagates slightly faster than the
undisturbed frozen sound speed, there is no interaction with the wall until it
reaches the wall. After reflecting from the end wall, the waves propagate through
a time-varying relaxation zone which is a part of the incident wave. From the
far-field solution we know that the thickness of the relaxation region is O(a s, 7*)
and that the shock speed is near ay,; therefore, the interaction of incident and
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reflected waves occurs on a characteristic time scale of order 7*. Hence, the
interaction inner region is delineated by x* = O(a;,7*) and #* = O(7*). In this
short time and spatial interval, it is reasonable to anticipate that convection
terms, which vanish at the wall, are of higher order, and that to lowest order the
phenomenon of shock-wave reflexion is governed by a linear equation. To observe
the details of reflexion, we introduce dimensionless independent variables

¥ A
= —— t = —
ap T T*
and define the non-dimensional perturbed dependent variables, as in the far-

field region, to be u, p, p and T. Again we expand the dependent variables
in a power series in €, and then find that the first-order approximation for the

velocity satisfies (1 6) (82u(1> agu(l))

N A T (3.1)

The other first-order quantities, such as temperature, pressure and density,
also satisfy this equation. If the term (y;—7v,) uP[y;, which is O(9), is retained
in the derivation, (3.1) can be rewritten in dimensional co-ordinates (x*,1*) as

x 0 2u® 0Pl P*u®  , ou®
T g e~ Woggwe | T\ Gprr T Teo ) T O

(3.2)

which is usually derived on the basis of the acoustic approximation and is appro-
priate for the case (a;—ag)fas = O(1). Equation (3.2) has been employed
by many authors to study the non-equilibrium problems, and the character
of the solution is well known. At times small compared with 7#*, the higher-order
operator associated with frozen speed controls the propagation of disturbances;
but, at large times, it is the equilibrium sound speed which governs the motion.
Equation (3.1) is simpler; there is only one speed controlling the motion since
the equilibrium speed is approximated by the frozen sound speed.

The boundary condition for shock-wave reflexion is zero velocity at the wall.
The initial conditions are imposed by requiring the solution to approach the
incoming steady-state solution as ¢t > —co. We first examine the fully dispersed
wave, then proceed by analogy with the partly dispersed case.

3.1. Fully dispersed shock wave

If My, < 1, the structure of the wave is everywhere differentiable any number
of times. As an initial condition we require that u(x,¢;¢€) approach the far-field
solution written in inner co-ordinates (z,t);i.e. ast - —o0, u(z,t) = fi(x —t —eft),
where the function f; is defined by (2.6). With ¢ - 0, we find that, as z,{ >—o0,
u®(x, t) - f,(x —¢t) provides the matching condition for the first-order solution.
To solve (3.1), we split the equation into
2u® 92 or
o @) and S+ F =0,

such that both equations have simple general solutions. The only solution for
the second equation that has F(x,t) bounded for ¢ -~ —cois F(x,t) = 0, and the
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first equation reduces to the wave equation. Applying the boundary condition
and matching with the far-field solution, we find u®(x,?) = fi(x,t) —fi(x —t). The
remaining first-order approximate variables are

P = p = Ty, — 1) = fya—b) +fy( —2—1).

This shows that the first-order asymptotic solution in this region is only a super-
position of left- and right-going waves of equal strength, in which the gas velo-
cities cancel at the wall, and other thermodynamic properties, such as pressure,
density and temperature, are additive there. This is classical acoustic reflexion.
To investigate the convective and dispersive effects in this inner region, we
must use the second-order approximation. The equations governing the second-
order terms are found by substituting the asymptotic power series into the
governing equations, and using the first-order results. Thus, we find the second-
order equations
PR+ U = — (pPud),,
ufP+ ) = — (U + u ), (3:3)

Y0 —p@—T® — pOT,
and

0 0
(1+ at)(u‘”—u‘”) (1+ )[p‘”u‘l +uOuG) — (uPpd +y,pVu), ] - 2ku. (3.4)

Equation (3.4) is a non-homogeneous wave equation, analogous to a non-homo-
geneous classical wave equation for the second-order approximation in gas-
dynamics. With «®(z,t) determined by (3.4), the relations (3.3) prescribe the
second-order density, pressure and temperature. Equations (3.3) and (3.4)
are valid ahead of, and behind, the discontinuity for the case of a partly dispersed
shock wave. A judicious interpretation of the expansion u®+ eu® is necessary
to get the correct speed for the discontinuity.

Variations in the relaxation time 7* do not affect the result to thisorder. For, if
we write 7% = 7% (14 7)), the effect of the term e7(is second order, and appears
in the rlght-hand side of (3.4) as TO(u{}) — u)),, which is zero.

Tt is convenient to write (3.4) in terms of characteristic co-ordinates £ = x—¢
and 9 = x+¢, which we shall use interchangeably with (z,?) in the interaction
region; they should not be confused with the (£, f) or (4, f) co-ordinate systems in
the far-field regions. Substituting for 4V, p®, p®, we find

u® +u® = PO, t), (3.5)
4F@ = [ — (1 +y)f1(E) f1(E) + 24f1(E) + (3~ fl V(=)
+ = A+ fil=m il =n)+26f 1 =m) + B=v) 1 (=) fi()],
+ [y + DfUEf(E) 7f+1) E) - B—ypfiE) (=]
+yr+ D= =)+ 7+ D=1 = B =y f1(=n)f(£)
+@B=v) [fuU&fi(=m) -fl =) f1(E)g (3.6)

where the prime denotes differentiation with respect to the funetion’s argument.
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The boundary conditions required for the zero-velocity wall condition are
that 4®(0,t) = 0, and so % (0,¢) = 0; this implies #®(0,¢) = 0 for (3.6). Initial
conditions are supplied by the asymptotic matching principle of Van Dyke
(1964): match the one-term far-field with the two-term inner expansion; that
is, the two-term inner co-ordinate representation of the two-term outer far-field
solution is set equal to the one-term far-field co-ordinate representation of the
two-term inner solution. Thus, we find that, as t - — oo with x —¢ fixed,

u®(z, 1) —>— Pif(x —t);
S0 FO(E,n)—~— Bl 1(8) —tf1(E) +f1(8)]

Integrating (3.6) twice, and satisfying the above matching condition, we find
FO(x,t); solving the first-order non-homogeneous linear partial differential
equation (3.5) with the initial condition is then a straightforward, albeit lengthy,
task. The final result for the second-order velocity is found to be

u® = — fi(f1(x —t) —f1(—2—

where Dy(€) = 2(1-4) [(1 — ) f1(E) +1og (1 — f1(£))]

Substituting the second-order velocity «? into the first two equations of (3.3),
and integrating with respect to « and ¢, respectively, we find that

p® = — BI(f1(E) +F1(—1) = B E) +Fr( =) +FLUE) +F3(—7)
-2 W) Dy~ 5 1) OO~ 2B~

PO = —BUFLE) +F1(=m) + BULE +h(—m) + 2OV ful -

YI(£108) @u(— ) + i~ 1) Pu(E) + 2, (E) ful -

With the second-order solutions for density and pressure known, the temperature
T® can be evaluated by using the third equation of (3.3). We note that, ast - —o0
with 2 —t fixed, the combination of first- and second-order solutions for pressure,
written in the far-field representation, is p®+ep®@ — f,(&)— Bif1(€) +eBf1(§)
which matches the first-order far-field solutions except for the second-order term
€ff1(&). This occurs for density and temperature as well, and may be remedied
by carrying out the second-order far-field expansion. As we need w only to
second order, this is not undertaken here.

3.2. Partly dispersed shock wave

For a partly dispersed shock wave there is no interaction with the wall until
the wave front reaches it. After reflexion from the wall, the discontinuous jump
propagates through the relaxation zone that has followed it to the wall. The
velocity profile f,, given by (2.7), is complicated, and it is impossible to find an
analytical relation predicting the precise strength of the reflected Rankine-
Hugoniot shock at any instant £. As (3.1) and (3.4) both possess two constant-
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speed wave operators (with different signs), it is reasonable for us to expect
that the reflected shock front propagates through the relaxation zone at con-
stant speed. We proceed with this approximation (as did Hanson 1971a), which
is clearly justified in a first-order approximation, and avoids_the difficulty of
finding the jump condition at any instant. While the procedure is not locally
correct to second order, it does give the correct asymptotic speed for the dis-
continuity with the proper interpretation of 4®+eu®. As we need this result,
we report it noting that it is only correct to first order locally. We generalize
the definition of the function f,(y) as follows. For y > 0, f, = 0, and for y < 0,
faly) satisfies the relation (2.7); hence the far-field, incident, partly dispersed
shock wave is given by u®W(y) = fo(y) for —o0 < y < co. By considering the left
and right derivatives for f, as y - 0, we may treat f,(y) as a single-valued func-
tion that is everywhere thrice differentiable. Hence, the calculation for the
reflexion of a partly dispersed shock wave, which involves third derivatives, is
essentially the same as that for a fully dispersed shock, except that we insert
the Rankine-Hugoniot relations for the shock-front jump conditions.

Following the procedure employed to solve the fully dispersed case, we find
the first- and second-order velocity to be

u® = fo(§) = fol =),

and  u® = — PHLFUE) ~Fil )~ gL LFUE) Dl =) =) Do(E)],

where Q, = 2(1 —A4) [(1 +ay) f2(£) +1og (1 - fo(E))]-

Similar expressions for density, pressure and temperature can also be found.
For t < 0 (i.e. # < 0), the terms including functions of # are zero, and there
is no contribution, so that there is no reflexion and no interaction. The Rankine—
Hugoniot shock front reaches the end wall = 0 at ¢ = 0, and is then reflected
from the wall, propagating through the time-varying relaxation zone behind
the incident shock with a speed that is initially approximated by the frozen
sound speed a,, and, as we shall see, approaches the speed a (1 —x +1(5 —3y,))
as it leaves the interaction region.

This completes the interaction (inner) solutions for both the fully and partly
dispersed waves. It is to be noted that, at the end wall, the first-order solutions
for temperature, pressure, and density are non-decreasing functions with respect
to time ¢. But their gradients with respect to space, viz. T, pP, p®, all vanish at
x = 0. Moreover, even the first derivatives with respect to « of the second-order
solutions forthese variables vanish at the wall. This implies that the temperature,
pressure and density have extreme values at the wall. This is consistent with the
adiabatic wall condition for a heat-conducting gas, which requires that

TP(0,8) = T(0,) = 0.

These inner solutions will not be valid for large times after reflexion; the
solutions for the second-order approximations contain secular terms such as
if'(x —¢), where f’ denotes f] for the fully dispersed shock wave and f; for the
partly dispersed wave. Consequently, for ¢t = O(e71), the inner asymptotic
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expansion for velocity becomes invalid. For ¢ - — o, these solutions match with
the incident far-field solution. To obtain a valid expansion for ¢ -+ 00, we need
the left-going version of the far-field wave equation. Written in co-ordinates
analogous to (2.5)

1 . et¥
V=t att), [= 5,
the first-order result is obviously
o\ fou® (y;+1_ o ouw
1+ (g 1) 2 kS0 b
(+377)[3t+( 2 * 7/er)aﬁ]JrK o (37

with the auxiliary relation
PO =p® = Ta)/(yf_ 1) = 2—uW(y, )

and with the boundary conditions % — 1 as 9 >—o and % — 0 as y - +o0.

By analogy with our matching of the incident shock wave with the inter-
action region solution, one can see that the first-order matching condition
is equivalent to the requirement that, as £ — 0%, u®(y,f) > 1—f; ,(—7)+O(e).
If we compare the matching conditions above with the steady-state solution
of (3.7), we can conclude that the appropriate solutions are

5—3
oot ()

It can easily be verified that the second-order interaction solution for velocity
properly matches with this solution. However, as in the case of the incident
wave, the second-order interaction solutions for temperature, pressure and
density cannot be matched with the first-order outgoing solutions for those
quantities without additional computations.

To construct the uniformly valid composite expansion for velocity, we
employ the additive-composition principle; the sum of the interaction and the
far-field solution is corrected by subtracting the part they have in common.
Thus the composite expansion for velocity of the fully dispersed shock is given
by

teomn =y (E= (L2 =x) ) ==

e | (= =) th=m - 5L (L0 O =) =i ~1) €80

for £<0,

and

teomn = £ =13 =1+ (T4 ) 1) —e | (L5~ ) it -2 2 73— )

22U GO === 0] for >0

For the partly dispersed shock, we must determine the composite trajectory of
the shock front. We write the composite trajectory, forf < 0, as

E—(}(y;+1)—k)t=0 and, for £>0, as 7—(3(5-3y,)+k)f=0.
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Hence, the composite expansion for velocity of the partly dispersed shock is given
by vt ; -
ucomp=f2(§—( f4 ——K‘)t) for 7<0,
and
5—3 _ +1 \.,
Ueomp = So(£) —fz(_77+ (—Z&‘}'K) t) _6[(&1“‘"") if3(€
3—vy.(,, 5-3 N L 5-3 _
+ 220 10 0o =1+ (24 0) 1) —fy (-4 (52 44) 1) 00
—3__27fﬁfé(—77+(§—:%+1<) f)] for £>0.

4

The uniformly valid composite representations of the density, pressure, and
temperature can be formed in the same way.

4. The isothermal wall

In §§2 and 3 we assumed that the viscosity and heat conductivity were
negligible. Thus the zero-velocity wall condition is a sufficient boundary con-
dition, and the temperature gradient at the wall 7,(0,t) is zero for both the first-
and second-order solutions. This implies that the non-equilibrium wave equation
which we derived and employed in §3 is unable to cope with an arbitrary tem-
perature or heat-flux boundary condition. Here again, the problem is one of the
singular-perturbation type and is solved by the introduction of a thermal
boundary layer adjacent to the wall. We first calculate the thermal boundary
layer (§4.1), then determine its effect on the interaction region (§4.2) and sub-
sequently on the reflected shock trajectory (§4.3).

4.1. The thermal boundary layer

Heat conduection to the wall is of importance only in a layer near the wall that
initially is very thin. As pointed out by Goldsworthy (1959), the pressure in this
thin thermal layer is independent of x*. Thus, after an appropriate stretching,
the equations governing the first-order terms in a thermal-layer expansion
will indicate the absence of a pressure gradient.

The new small parameter for the thermal-layer expansion is é = I/Ré}o 5
from the previous assumption that ¢ B, 4, .« > 1, we have a realistic restraint that
e > ¢2. The appropriate thermal-layer co-ordinates (Z,t) are defined by the
stretching # = x/¢ and { = t, where z,¢ are dimensionless variables defined in
§3. The thermal-layer dependent variables (%, 7;8), §(2,%;2) ..., defined by ana-
logy with §2, are expanded in the form

= 2002, 1)+ 2a®(2,0) + ...,

b= pO&, 1) +2p®(@,0)+ ...,
ete. The variations of fluid properties in the thermal-layer region are the same
order of magnitude as those in the interaction region, but the velocity is of higher

order here, being O(e?); thus we again expect convection and dissipation to be
negligible, and the governing equations to be linear.
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Substitution of the thermal-layer expansions into the basic equations, ex-
pressed in the stretched co-ordinates (2,f), yields the set of first-order equations

PP =0, PP =0, ,p0 = Lorypm, @«
and 1 +—"i P 4 ah L pa) - 0. (4.2)
of t 2 pp i

Equations (4.1) and (4.2) are in a form suitable for the problem with an arbitrary
wall-temperature condition; the adiabatic-wall solution automatically satisfies
{4.1) and (4.2).

We assume, for simplicity, that the wall is isothermal. This is a good
approximation in many experimental situations. The variation of the end-wall
temperature was less than 19, in the experiments of Sturtevant & Slachmuylders
(1964). Thus T®(0,f) =0 and 49(0,f) = 0. Other boundary conditions are
provided by matching the solution for this region to that for the interaction
region. We treat the fully and partly dispersed shock waves separately.

4.1.1. Fully dispersed shock wave. The thermal-layer representation of the
first-order adiabatic velocity as z — 0 is w® ~ 22f|(—{)#¢. This provides the
matching condition for the thermal-layer velocity. As 2 » —o0, 4® — 28f;(~{).
Similarly, for other dependent variables, we find the matching conditions are, as
2 —>—o00, PV = pO = PW/( (vs—1) > 2f,(—{). This follows from the second equa-
tion of (4.1), which leads to a simple solution for pressure and gives the pressure
history at the shock-tube end wall, and permits simplification of (4.2) to a ‘non-
equilibrium diffusion equation’

N (a1 A
(1 +5£) (Tél)_ﬁﬁgé+2(yf_ 1)f{(—t)) -0,
or P — A+ 20y, — Dfi(~) = e() e, s

where ¢(2) is an arbitrary function. The right-hand side of (4.8) is the general
solution for the operator (14 /éf). Satisfying the essential condition that the
solution is bounded throughout —oo < £ < o0, we conclude that ¢(2) = 0. Now
(4.3) can be solved by taking the Fourier transform with respect to time.
Satisfying the boundary and matching conditions, it follows at once that the
first-order solutions for temperature, density and velocity in the thermal bound-
ary layer are given by
T® = 2y~ ) fi(~E) +0:(2, ), d
PO = 2fy(~1)—0y(8,0), } )
1 €

ot (B (22

o (yp=1)Prb [t B 2 — Prz®
where 0,(2,t) = T f—wfl( T) =i exp (4(?—7)) dr. (4.5)

and A0 = 28f](—
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The first terms of (4.4) and (4.5) are the adiabatic solution in the thermal-layer
region; the second terms represent the influence of heat conduction. Care must
be exercised in determining 4® for 2 » 0, because the denominator appearing
in the integrand of 6,; approaches zero as 7 — {.

4.1.2. Partly dispersed shock wave. In this case, we are interested only in { > 0;
for f < 0, the gas temperature at the wall is constant and equal to 7. At { = 0,
the incident shock front meets and then reflects from the end wall and all the
thermodynamic properties such as temperature, pressure and density jump to
values determined by Rankine~-Hugoniot relations. Heat conduction, however,
keeps the wall at the constant temperature 7. After { 2 4yf/PrRafo,., the re-
flected shock front has traversed the thermal layer consequently we assume that
there is no Rankine-Hugoniot jump in the thermal-boundary-layer region. This
allows us to determine the matching conditions by representing the adiabatic-
wall solution in thermal-layer co-ordinates (2,f) without worrying about the
discontinuous behaviour of fy(x — t) and fo( — « —1). As in the fully dispersed case,
the governing equation is (4.3), but with fi(—1%) replaced by fi(—f). Here, how-
ever, we have an initial-value problem with

PO, 0) = 2(y;—1)f3(0)

T{(2,0) = —2(y,~ 1)/3(0)
and TO(2,0) = TO(#,0) = 0.
These initial conditions conform with our assumption that, at { = 0, the re-
flected shock front has already reached some 2 > 1, and has a uniform tempera-

ture field behind it. Satisfying these conditions, we again conclude that ¢(2) = 0,
and find

PO = 20y,— 1) fo( =)+ 0,(8, t),}
PO = 2f,(— 1) — 0,8, 6),

Rk = [

where 05(2,%) = (y;—1) (77) j;fzt__ ) exp (;(;)jf;) ar

Similar expressions for density and temperature apply.

(4.6)

4.2. Thermal-boundary-layer effects on the interaction region
As 2> —o0, the asymptotic values of 6,(2,f) and 6,(2,7) in (4.4) and (4.6),
respectively, tend to zero exponentially. Hence, as £ — —oo, for the fully and
partly dispersed cases, '@ — 2(y;—1)f1.5(—7) and p® — 2f, ,(—7), which shows
there is no effect on the temperature and density in the interaction region. How-
ever, the agymptotic value of thermal-layer velocity shows there are second-
order effects. Writing (4.5) and (4.7) in co-ordinates (x, ) we find that, as 2 > —co,

eaM — 2fi,2( —t) x‘l‘éUl,z(t):

23 FLM 65
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where, for the fully and partly dispersed cases,

—-1) dr
Ul(t = — 7‘>7/'fP7' f fl t+T —g,

and Uy(t) = (7TP7‘ ( ffz (—t+7 )

Thus, a velocity of O(2) is induced by heat conduction to the wall; and the inter-
action and thermal-layer expansions can only be matched if the interaction ex-
pansion takes the form

u(x,t) = uO(x, t) + eu@(x, t) + 2u®(x, t) + O(€?, &% €8). (4.8)

Here u® and 4® have been found in § 3, and «® is the contribution from end-wall
heat conduction to be determined by a matching with the thermal-layer results.
This is equivalent to a new wall boundary condition for velocity determined by
U, o(t). (Here we take & > €?; if £ < €2, the induced velocity is O(e?) and its in-
fluence negligible.) Substitution of (4.8) and similar expansions for other gas
properties into the governing equations yields

7
(1 +5t) (u'¥) —ul) = 0.

For the fully dispersed case, the solution satisfying the condition that, as
x> 0, u® — U,(t) and the condition that, as t > —co with x—1 fixed,

u®(x,t >—00) =0
is of the form w®(x,t) = Uy(x+1). (4.9)

This result shows that only a left-going wave is generated by the existence of the
thermal boundary layer; the reflexion of this second-order wave from the ‘shock
front’ is of higher order, and no right-going wave appears. The generated wave
has the same ‘shape’ as the wall velocity U,(¢). Similarly, we find that, for the
partly dispersed case, the solution is #® = 0 for x+¢ < 0 and

u®(x,t) = Uy(x+t) for x4+t > 0. (4.10)
The velocities at @ = 0 are not equal to zero; the new boundary values
Eu®(0,1) = ¢l 4(t)
are ‘effective wall velocities’. This corresponds to a flux of gas from the inter-
action region toward the end wall as a result of the hot gas adjacent to the wall

being cooled by it. Integrating U,(¢) or U,(t) gives the ‘effective wall displace-
ments’

e( dr
2X,(t) = 6(7:’}1;7. ffl —1+7) g

and 2X (1) = %__[o% fodgfof;(—§+7)g].

Figures 4 and 5 show the ‘effective wall velocities and displacements’ as func-
tions of time, and delineate their asymptotic behaviour.
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Fieurk 4. Effective wall velocity and displacement for fully dispersed shock
(Pr = 075, k = 1-0).
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Fiaure 5. Effective wall velocity and displacement of partly dispersed shock
(Pr = 0-75, k = 0-5).

4.3. Thermal-layer effects on the reflected shock

We now turn to the problem of determining the effect of the thermal layer on
the reflected shock after it has travelled many relaxation lengths. The new
matching condition for the outer solution is that, as £ — 0,

i = 1=Lyal= )= (S 0) =)+ 0,00) (@.11)

23-2



356 C.-M. Hung and R. Seecbass

In §3 we noted that, in both the fully and partly dispersed cases, the first-order
terms of (4.11) lead to a steady-state solution. Here we determine the influence
of the term which accounts for end-wall heat conduction €U, (%) on the reflected
shock trajectory. This requires the solution of (3.7) subject to the initial condition
that, as { - 07,

5-3 J
U—>1—f, (—77+ (—-——4—%+K) t) +eU,, 5(n).

Equation (3.7) cannot be solved analytically. Owing to the complexity of U, ,(7),
the asymptotic behaviour of # is also difficult to find and we resort to a simple
numerical method.

We introduce the co-ordinates

r=9—36-3y)+k)t, 1
and write w(r, ) =1—fi(—r)+&uD(r, ).

¢

]

In these co-ordinates and with #® as our basic unknown, the second-order
equation (3.7) is rewritten for the fully dispersed case as

0 ou®
(1+5;') Q+K—ar— =0,

. (4.12)

N

subject to the initial condition @®(r, 0) = U (r), where

7
Y

o, _ Ye+1_
—— @) _ L8 T
Q-5 (1)~ - u®—,

4 2

Solving the first equation for (r,t) for given w®(r,?) with ¢(—o0,?) =0 at a
given time 7 = f,, then substituting the result into the second equation, we may
determine #®(r, I + Af). For stability, an ‘up-wind’ differencing scheme is used.
In our case, the term g,(r)6u®/or is written in forward differences and w®u®
in backward differences.

For the partly dispersed case, the basic numerical scheme is the same except
that special techniques are required at the shock front. The speed of the shock
front and the conditions right behind it are not known a priori. In this case,
it is convenient to write the dependent variable for velocity in the form

w(r,t) = 1—fo( —r+r,@)) +eu(r,t), (4.13)

where 7,(f) is an unknown function of time f to be computed by knowing the
shock speed at any instant. The discontinuous jump is at r—r(¢) = 0, and
the local shock speed is )

U*(t) = -—[1— (%y—fﬂvc) e] af0+eaf0drs—(it),

) = - (L5 k) + L= (1= f =),

while the velocity right behind the shock front is %, = 1 — f,(0) + éu§?(f), where
u2)(f) denotes the jump of the second-order term. The Rankine-Hugoniot rela-
tionsrequire dr (@)

8

dr{t) _ . Vstloog
= s L), (4.14)
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FiaUurE 6. Velocity profiles near an adiabatic wall. ———, locus of points

where v = 0-5. (¢ = 001, « = 1-0.)

Fiaure 7. Reflected velocity profiles for partly dispersed wave (adiabatic wall).
(e = 001, k = 0-5.)
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Ficure 8. Flow-field properties of a fully dispersed wave during the reflexion from
an adiabatic wall (¢ = 0-01, k = 1-0). (Curves labelled with values of ¢.)

which provides us with the relation for calculating r(f) and then determining
the shock position %, for all times ¢*. Substitution of (4.12)into (3.7) yields
equations similar to (4.13).

The grid points for the finite differences are designated such that the node
points have equal spacing except in the first mesh, which is affected by shock
position. At time Z, we solve the analogue of the first of (4.12) for Q(r,%) given
wA(r,T) with Q(r = r(f),7) evaluated from the analogue of the second of (4.12).
We then substitute @(r,?) into the analogue of the first of (4.12) to compute
#D(r,f+ Al). Using (4.14) we calculate r,(Z+4 Af), then find %@ = r (I +Af),
{ +At) by linear interpolation.
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FicUurk 9. Flow-field properties of a partly dispersed wave during the
reflexion from an adiabatic wall (¢ = 0-01, k = 0-5).
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Ficure 10. Adiabatic end-wall temperature history (¢ = 0-01, v, = 1-4).
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Ficure 11. Comparison of the end-wall density history for adiabatic
( ) and isothermal (— — — —) walls.

5. Discussion and and conclusion

The analytical results of our work are given in §§3 and 4. While they provide
an understanding of the resulting phenomena, they are more easily interpreted
after they have been evaluated numerically for some specific case. Unfortunately,
we have not found appropriate experimental results for comparison; since weak
shock waves have been studied in the absence of vibrational relaxation and
moderate strength shock waves with vibrational relaxation examined, such
experiments are possible. Increased interest in diverse vibrational relaxation
times seems likely to lead to such experiments. The appropriate analytical
results can be computed from the appropriate composite expansions given in § 4.
Here we illustrate some of these for an arbitrarily chosen weak shock strength.
Flow fields are computed for both fully and partly dispersed shock waves
corresponding to initial frozen Mach numbers smaller and greater than one.
The Prandtl number is taken to be 0-75 and y; = 1-4; these values are appropri-
ate for a vibrationally relaxing diatomic gas.

Figure 6 shows the spatial variation of velocity for a fully dispersed shock
wave constructed from the composite expansion for the adiabatic wall problem.
These curves show the interaction between the shock wave and the end wall.
The dashed lines represent the trajectory of the points where v = %, which we
may take to be the location of the shock. The shock wave comes from the left
with non-dimensional speed 1+ (1(y;+1)—«)e, is reduced to zero speed then
reflected back with a speed that approaches 1 —(}(5—3y,)+«)e. Near the wall
the flow velocity must vanish, and the balance between convection and ‘relaxa-
tion’ dispersion, which maintains the profile of a steady-state shock wave, cannot
continue to hold. The first-order solution agrees with an acoustic approximation,
behaving like the interaction of two weak waves with equal strengths but moving
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FicUuRrE 12. Velocity profile of a fully dispersed shock wave reflected from an isothermal
wall (Z - 0). — - — —, includes induced thermal velocity (¢ = 0-1, x = 1:0).
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Fi1curs 13. Velocity profile of partly dispersed shock wave reflected from an isothermal wall
(# - 0). — — — —, includes induced thermal velocity. (¢ = é = 0-1, k = 0:4.)

in opposite directions. Convection and dispersion fail to balance to second order.
For a partly dispersed wave, the wave consists of a Rankine-Hugoniot jump
followed by a relaxation zone. Since a partly dispersed shock wave propagates
faster than the frozen sound speed, there is no interaction with the wall before
it reaches the wall. Figure 7 shows the velocity profiles of a partly dispersed
shock wave after reflexion from an adiabatic wall. Figures 8 and 9 are plots of the
variation in pressure, density and temperature, during reflexion from an adia-
batic wall. The derivatives of these thermodynamic properties are always zero
at the wall, and the properties always have extreme values there. Figure 10
depicts the value of the time-varying adiabatic-end-wall temperature.
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- 0-4

Ficure 14. Variation of induced thermal veloeity, fully dispersed shock
(€ = 0:01, « = 1-0).

Frgure 15. Variation of induced thermal veloeity, partly dispersed shock
(€ = 001, € = 002, k = 0-4).

For an isothermal wall, there is a thermal layer with thickness O(Rf{fo,,).
The pressure is approximately constant through this thin thermal layer, while
the gas is cooled and thus density increased. The pressure at the isothermal end
wall is the same as that at the adiabatic wall. Figure 11 shows the values of
density at adiabatic and isothermal walls as functions of time. The existence
of the thermal boundary layer does not affect the incoming steady-state shock,
but does affect the structure of the reflected shock to O(Réf‘],‘). The ‘negative’
thermal layer attenuates the strength of the reflected shock wave. Figures 12
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and 13 demonstrate the effect of this induced thermal velocity on the structure
of the reflected shock wave. The influence of induced velocity is comparatively
more profound, and exists longer, in the region far behind the wave front. Figures
14 and 15 show the details of the time variation of the induced thermal velocity
in the reflected far-field region. For large times, the effects of the thermal layer
become weaker and the structure of the shock wave returns to the steady struc-
ture, which represents a balance between nonlinear convection and relaxation
dispersion.

This research was supported by the U.S. Air Force Office of Scientific Research.
The authors are indebted to Professors W.R.Sears and E.L.Resler for their
suggestions and helpful discussions. They are also indebted to the referees and
to Dr H. Buggisch for particularly constructive criticisms of the manuscript.
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